

JC-003-1016003

Seat No.

B. Sc. (Sem. VI) (CBCS) Examination

August - 2019

Mathematics: Paper - 10 (A)

(Optimization & Numerical Analysis-II)

Faculty Code: 003

Subject Code: 1016003

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) All questions are compulsory.

- (2) Figure to the right indicate full marks of the questions.
- 1 (a) Answer the following questions:

4

- (1) Define: Surplus variable.
- (2) Which method is suitable to find optimum solution of any LPP that contains some of the constraints of the type greater than or equal?
- (3) If $C_j Z_j = 0$ corresponds to one of the non basic variables and $C_j Z_j < 0$ correspond to rest non basic variables appear in simplex algorithm, then the solution of given LPP is of the type alternate optimum. (True / False)
- (4) Define: Simplex.
- (b) Attempt any one:

 $\mathbf{2}$

- (1) State an example of LPP and express it into standard form.
- (2) Define:
 - (i) Feasible solution.
 - (ii) Convex set.

(c) Attempt any one:

3

- (1) Write short note on types of solutions of LPP.
- (2) Solve the following LPP using graphical method : Max. $Z=-2x_1-x_2$, subject to the constraints : $3x_1+x_2=3$, $4x_1+3x_2\geq 6$, $x_1+2x_2\leq 4$
- (d) Attempt any one:

and $x_1, x_2 \ge 0$.

5

- (1) Maximize $Z = 2x_1 + 4x_2 + x_3 + x_4$; subject to: $2x_1 + x_2 + 2x_3 + 3x_4 \le 12$, $3x_1 + 2x_3 + 2x_4 \le 20$, $2x_1 + x_2 + 4x_3 \le 16$ and $x_1, x_2, x_3, x_4 \ge 0$.
- (2) Write algorithm for big-M method.
- 2 (a) Answer the following questions:

- (1) If the matrix form of LPP is: maximize Z = CX, subject to $AX \le B$, $X \ge 0$, then dual of the primal is _____.
- (2) If a transportation problem of n supply points and m demand points has non-degenerate solution, then the number of allocation in basic feasible solution is ______.
- (3) Write name of method, that optimizes solution of transportation problem.
- (4) Write name of method, to find optimum solution of assignment problem.

(b) Attempt any one:

2

(1) Write dual of the LPP: Minimize $Z = 2x_2 + 5x_3$, subject to $x_1 + x_2 \ge 2$, $2x_1 + x_2 + 6x_3 \le 6$, $x_1 - x_2 + 3x_3 = 4$ and $x_1, x_2, x_3 \ge 0$.

- (2) Explain North-West corner method in brief.
- (c) Attempt any one:

3

- (1) Write a note on primal-dual relationship.
- (2) Solve the following transportation problem by using Least Cost Entry Method:

Warehouse →	W_1	W_2	W ₃	W_4	Factory
Factory ↓	1	2	3	4	Capacity
F ₁	40	8	70	20	18
F ₂	70	30	40	60	9
F ₃	19	30	50	10	7
Warehouse	5	8	7	14	34
Requirement	3	0	,	17	J 4

(d) Attempt any one:

- (1) Describe Hungarian method.
- (2) Find optimum solution of the following transportation problem:

		Destination					
		d ₁	d_2	d_3	d_4	d_5	supply
	Delhi	4	2	3	2	6	8
Source	Surat	5	4	5	2	1	12
	Pune	6	5	4	7	3	14
	Demand	4	4	6	8	8	

3 (a) Answer the following questions:

- (1) Which interpolation formula is an outcome of average of Gauss-Forward interpolation and Gauss-Backward interpolation formula?
- (2) Newton's divided difference interpolation is same as _____ if domain data is at equidistance.
- (3) If the value of $p = \frac{x x_0}{h}$ lies in $\left[\frac{3}{4}, 1\right]$, the best suitable interpolation to apply is _____.
- (4) Lagrange interpolation formula is applicable only when the arguments are not at equidistance. (True/False)
- (b) Attempt any one:

2

- (1) If $f(x) = x^{-1}$, prove that the third order divided difference $f(1, 2, 3, 4) = \frac{1}{4!}$.
- (2) State Lagrange's interpolation formula.
- (c) Attempt any one:

- (1) Derive Newtons divided interpolation formula.
- (2) Apply Stirling's formula to find a polynomial which takes the values as per the following table:

х	1	2	3	4	5
у	1	-1	1	-1	1

(d) Attempt any one:

5

- (1) Derive Laplace-Everett's interpolation formula.
- (2) Using following table, find the value of x at which the value of y = 13.6.

x	30	35	40	45	50
f(x)	15.9	14.9	14.1	13.3	12.5

4 (a) Answer the following questions:

4

- (1) Write first derivative of Gauss-Forward interpolation formula.
- (2) Minimum number of subintervals required to apply Trapezoidal and Simpson's 3/8 rule simultaneously is
- (3) State error formula of Simpson's $\frac{1}{3}$ rd rule.
- (4) State Simpson's 3/8 rule.
- (b) Attempt any one:

 $\mathbf{2}$

- (1) Derive second order derivative of Newtons-Forward interpolation formula.
- (2) By using Simpson's $\frac{1}{3}$ rd rule, find $\int_{0}^{1} y \ dx$ from the following observations:

x	0	0.25	0.5	0.75	1
У	1.0000	1.2840	1.6487	2.1170	2.7183

(c) Attempt any one:

- (1) Derive first and second order derivative formula from Bessel's interpolation formula.
- (2) Estimate the length of the arc of the curve $3y = x^3$ from (0, 0) to $\left(1, \frac{1}{3}\right)$ using Simpson's $\frac{1}{3}$ rd rule taking six sub-intervals.
- (d) Attempt any one:

5

3

- (1) Derive Newton-Cotes quadrature formula.
- (2) From the following table of values of x and y find y' (1.25) and y'' (1.25):

x	1.00	1.05	1.10	1.15	1.20	1.25	1.30
y	1.00000	1.02470	1.04881	1.07238	1.09544	1.11803	1.14017

5 (a) Answer the following questions:

4

- (1) Runge-Kutta method of second order produces more accurate solution than improved Euler method. (True/False)
- (2) Which type of differential equation can be solved by Runge's method?
- (3) Write name of any one predictor-corrector method.
- (4) Write formula of modified Euler's method.
- (b) Attempt any one:

- (1) Give geometric interpretation of improved Euler method to solve differential equation.
- (2) Write working rule of Runge's method to solve differential equation.

(c) Attempt any one:

- 3
- (1) Explain Picard's method to solve simultaneous differential equation.
- (2) Using Runge-Kutta method of fourth order, find y(1.1), y(1.2), given that $2y' = 2x^3 + y$, y(1) = 2.
- (d) Attempt any one:

- (1) Explain Milne's method.
- (2) Employ Taylor's method to obtain approximate value of y at x = 1.2 for the differential equation $\frac{dy}{dx} = 2y + 3e^x$, given that y(1) = 0. Compare the numerical solution with the exact solution.